GROUPS

8.1. INTRODUCTION

In the present chapter, we introduce the concept of algebraic system, binary operations
and groups. The study of cyclic groups, normal groups, group homomorphism etc. help us in
understanding various applications of computer science. Groups play an important role in
coding theory.

8.2. ALGEBRAIC STRUCTURE

If there exists a system such that it consists of a non-empty set and one or more opera-
tions on that set, then that system is called an algebraic system. It is generally denoted by
(A, op,, 0p,, ..., 0p,), where A is a non-empty set and op,, op,, ..., op, are operations on A.

An algebraic system is also called an algebraic structure because the operations on
the set A define a structure on the elements of A.

8.3. BINARY OPERATION

Consider a non-empty set A and a function f such that f: A x A — A is called a binary
operation on A. If * is a binary operation on A, then it may be written as a * b.

A binary operation can be denoted by any of the symbols +, —, *, ®, A, 3, v, A etc.

The value of the binary operation is denoted by placing the operator between the two
operands.
e.g., (i) The operation of addition is a binary operation on the set of natural numbers.

(iz) The operation of subtraction is a binary operation on set of integers. But, the operation

of subtraction is not a binary operation on the set of natural numbers because the subtraction
of two natural numbers may or may not be a natural number.

(iii) The operation of multiplication is a binary operation on the set of natural numbers,
set of integers and set of complex numbers.
(iv) The operation of set union is a binary operation on the set of subsets of a universal

set. Similarly, the operation of set intersection is a binary operation on the set of subsets of a
universal set.
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8.5. PROPERTIES OF BINARY OPERATIONS

There are many properties of the binary operations which are as follows :

1. Closure Property. Consider a non-empty set A and a binary operation * on A. Then
A is closed under the operation *, ifa * b € A, where a and b are elements of A.

For example, the operation of addition on the set of integers is a closed operation. i.e., if
a,be Z,thena+be ZVa,be Z

Example 2. Consider the set A = (- 1, 0, 1). Determine whether A is closed under
(¢) addition (ii) multiplication.

Sol. (i) The sum of the elements is (~ 1) + (- 1) =— 2 and 1 + 1 = 2 does not belong to A.
Hence A is not closed under addition.

(ii) The multiplication of every two elements of the set are

-1*0=0; -1+*1=-1,; -1*=-1=1
0*-1=0; 0+*1=0; 0x0=0
l*=1=-1; 1+0=0; 1+1=1

Since, each multiplication belongs to A hence A is closed under multiplication.
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Example 3. Consider theset A=(1,3,5, 7, 9, ...}, the set of odd +ve integers. Determine

whether A is closed under (i) addition (it) multiplication.

Sol. (i) The set A is not closed under addition because the addition of two odd numbers

produces an even number which does not belong to A.

(ii) The set A is closed under the operation multiplication because the multiplication of

two odd numbers produces an odd number. So, for everya,b € A, wehavea *b e A.

2. Associative Property. Consider a non-empty set A and a binary operation * on A.

Then the operation * on A is associative, if for everya b,c, € A,wehave(a*b)*c=a * (b * ¢).

Example 4. Consider the binary operation * on Q, the set of rational numbers, defined by
a*b=a+b-abVa be Q.

Determine whether * is associative.

Sol. Let us assume some elements a, b, c € Q, then by definition
(a*b)*c=(a+bdb—-ab)*c=(a+b—-ab)+c—(a+b—-ab)

=a+b-ab+c—-ca-bc+abc=a+b+c—-ab-ac-bec+abe.

Similarly, we have
a*b*c)=a+b+c—ab-ac—-bc+abc

Therefore, (a*b)*c=a*(b=*c).

Hence * is associative.

3. Commutative Property. Consider a non-empty set A and a binary operation * on A.

Then the operation * on A is commutative, if for everya,be A, wehavea*b=b *a.

by

Example 5. Consider the binary operation * on Q, the set of rational numbers, defined

a*b=a?+b?Va be Q.

Determine whether * is commutative.

Sol. Let us assume some elements a, b € Q, then by definition
a*b=a2+b2=b2+a2=b*a

Hence * is commutative.

Example 8. Consider the binary operation * and @, the set of rational numbers defined

a*b=a—; Va be Q.

Determine whether * is (i) associative (ii) commutative.
Sol. (i) Let a, b € Q, then we have

ab ba
a*b= ? = ? =b+*a
Hence * is commutative.
(i2) Let a, b, c € Q, then by definition we have
ab

—.C
(a#b)#c=(%b]¢c= 22 =aTbc—
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abe
bel 2 abe
Similarly, a'(b*c)=a*[?)= 2 =1
Therefore, a*(b*c)=a*b*c)
Hence, * is associative.
4. Identity. Consider a non-empty set A and a binary operation * on A. Then the opera-
tion * has an identity property if there exists an element, e, in A such that

a * e (right identity) = e * a(left identity) =a V a € A.

Theorem L Prove thate, =e,” where e’ is a right identity and e,” is a left identity of a
binary operation.
Proof. We know that e,” is a right identity.

Hence, e,"*e)/ =e, ..(1)
Also, we know that e,” is a left identity.
Hence, e,"*e)/ = e, ...(2)

From (1) and (2), we havee,’ = e,".
Thus, we can say that if e is a right identity of a binary operation, then e is also a left
identity.

Example 7. Consider the binary operation * on I, , the set of positive integers defined by

a*b= 922. Determine the identity for the binary operation *, if exists.

Sol. Let us assume that e be a +ve integer number, then
e*a=a,ael,

= e—;=a = e=2 ...(1)
Similarly, ase=a,a€l,

ae

—2-=a or e=2 ...(2)

Form (1) and (2) fore = 2, we havee *a =a *e=a
Therefore, 2 is the identity element for *.

5. Inverse. Consider a non-empty set A and a binary operation * on A. Then operation
* has the inverse property if for each a € A, there exists an element b in A such that

a * b (right inverse) = b * a (left inverse) = e, where b is called an inverse of a.
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8.6. SEMI-GROUP (P.T.U. B.Tech. May 2008, May 2004)

: ; Let us consider, an algebraic system (A, *), where * is a binary operation on A. Then,
the system (A, *) is said to be a semi-group if it satisfies the following properties :

1. The operation * is a closed operation on set A.
2. The operation * is an associative operation.

Example 8. Consider an algebraic system (A, *), where A=(1,3,5,7,9, ...}, the set of all
positive odd integers and *is a binary operation means multiplication. Determine whether
(A, *) is a semi-group. '

Sol. Closure property. The operation * is a closed operation because multiplication of
two +ve odd integers is a +ve odd number.

Associative property. The operation * is an associative operation on set A. Since for
everya, b, c € A, we have
(@*xb)*xc=ax(b*c)
Hence, the algebraic system (A, *) is a semi-group.

Example 9. Consider the algebraic system ({0, 1), #), where * is a multiplication opera-
tion. Determine whether ({0, 1}, *) is a semi-group.
Sol. Closure property. The operation * is a closed operation on the given set since
0*0=0;0*1=0;1*0=0;1*1=1.
Associative property. The operation * is associative since we have
(@a*b)*c=a*(b*c)Va,b,c
Since, the algebraic system is closed and associative. Hence, it is a semi-group.

Example 10. Let S be a semi-group with an identity element e and if b and b’ are inverses
of an element a € S, then b = b’ i.e., inverse are unique, if they exist.

Sol. Given b is an inverse of ¢, therefore, we have
a*xb=e=b*a

Also, b’ is an inverse of a, therefore, we have
a*b'=e=b*a

Consider b*x(@*b)=b*e=b (1)
and b*xa)*b’' =e*xb' =b .(2)

Now, S is a semi-group, associativity holds in Si.e.,, b *(a * ") =(b *a) * b’

= b="b" | using (1) and (2)

Example 11. Let N be the set of positive integers and let * be the binary operation of
least common multiple (L.C.M) on N. Find

(@a)4*6,3%5,9*%18,1*6
(b) Is (N, *) a semi-group
(c) Is N commutative
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(d) Find the identity element of N
(e) Which elements of N have inverses ?
Sol. (a) Let x,ye Nand x *y = L.C.M. ofx and y
4+*6=LCM. of 4and6=12
3+*5=LCM. of 3and5=15
9+18=L.CM. of 9and 18=18
1*6=LCM. of 1and6=6
(b) We know that the operation of L.C.M. is associative, i.e.,
a*(b*c)=(a*b)*c Va,bceN
. N is a semi-group under *.
(c) Also fora, b e N,
a*b=LCM.ofaandb=L.CM.ofbanda=b*a
N is commutative also.
(d) Fora € N, consider a*1=L.CM.ofcand1=a
Also, l*a=LCM.oflanda=a
R a*l=a=1*a
i.e., 1 is the identity element of N.
(e) Consider a * b = 1i.e., L.C.M. of ¢ and b is 1, which is possible iffa = 1 and b = 1.
i.e., the only element which has an inverse is 1 and it is its own inverse.
Example 12. Consider the set Q of rational numbers and let * be the operation on @
defined bya*b=a+b-ab

(a)ﬁnd3-4,2t(-5),7té

(b) Is (Q, *) a semi-group?

(c) Is @ commutative?

(d) Find the identity element of Q.

(e) Which elements of Q have inverses and what are they ?
Sol. Givena*b=a +b-abfora,be Q

(a) 3*4=3+4-12=-5
2*(-5)=2+(-5)-(-10)=2-5+10=7
1 1 7
T =* 2 —7+§-§=4.

(b) Q will be a semi-group if it holds associativity under * for a, b, c € Q.
Consider a*(b*c)=a*(b+c-bec)

=a+((b+c-bc)-alb+c-bec)

=a+b+c—-bc—ab-ac+abc (1)
Also, (@a*b)*c=(a+b-ab)*c

=a+b-ab+c—-(a+b-ab)c

=a+b+c-ab-ac-bec+abe

=a+b+c—-bc—-ab-ac+abc ...(2)
From (1) and (2),

a*(b*c)=(@*b)*c

Hence, (Q, *) is a semi-group.
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(c)Fora,be Q
Consider
a*b=a+b-ab=b+a-ba=b*a
Q is commutative.
(d) Let e is the identity element of Q, therefore, for a € Q, we have
a*e=a
a+e—-ae=a
e-ea=0
e(l-a)=0
e=0,1ifaz1l
The identity of Q is 0.
(e) If x is the inverse of a € @, then a * x = 0 (identity)

-l

= a+x-ax=0
= a+x(1-a)=0
= a=x(a-1)
EN I-L,ail
a-1
ThusahasaninverseLl.
a—

Example 13. Consider a non-empty set S with the operationa * b =a
(a) Is the operation associative ?
(b) Is the operation commutative ?
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and

Sol. (@) Fora, b,ce S,
Consider
a*(b*c)=a*b=a
(@*b)*c=c*a=a
* is associative.
(b) Fora#be S,
Consider
a*b=a and br*a=0>
= a*bzb*a
* is not commutative.
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8.10. MONOID (P.T.U. B.Tech., May 2008 Dec. 2004)

Let us consider an algebraic system (A, o), where o is a binary operation on A. Then the
system (A, o) is said to be a monoid if it satisfies the following properties.

(i) The operation o is a closed operation on set A.
(i1) The operation o is an associative operation.
(iii) There exists an identity element w.r.t. the operation o.

Example 21. Consider an algebraic system (I, +), where the set I = (0, 1, 2, 3, 4, ...} the
set of natural numbers and + is an addition operation. Determine whether (I, +) is a monoid.

Sol. Closure property. The operation + is closed since sum of two natural numbers is
a natural number.
Associative property. The operation + is an associative property since we have
@+b)+c=a+b+c)Va b c el

Identity. There exists an identity element in set I w.r.t. the operation +. The element 0
is an identity element w.r.t. the operation +. Since, the operation + is a closed, associative and
there exists an identity. Hence, the algebraic system (I, +) is a monoid.
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6.

TEST YOUR KNOWLEDGE 8.1

Let + be the operation on the set R of real numbers defined bya * b =a + b + 2ab

(a) Find 2+ 3,3 »(-5), 7 » (1/2)

(b) Is (R, *) a semi-group ? Is it commutative ?

(c) Find the identity element

(d) Which elements have inverses and what are they ?

Let S be a semi-group with identity e and let b and b be inverses of a. Show that b = b'i.e.,

inverses are uniques, if they exist. (P.T.U.B.Tech. Dec. 2003)
Prove that for any commutative monoid (M ; *), the set of idempotent elements of M form a
submonoid. (P.T.U. B.Tech. Dec. 2004)

If a, b are elements of a monoid M and a * b = b » a. Show that
@*b)s(a=b)=(@*a)*(b*b)

Let S = Q x Q, the set of ordered pairs of rational numbers, with the operation * defined by
(a, b) * (x,y) = (ax, ay + b)

(a) Find (3, 4) * (1, 2) and (- 1, 3) * (5, 2)

(b) Is S a semi-group ? Is it commutative ?

(c) Find the identity element of S

(d) Which elements, if any, have inverses and what are they ?

Let S = N x N, the set of ordered pairs of positive integers with the operation * defined by

(a, b) * (c, d) = (ad + bc, bd)

(a) Find (3,4)+(1,5)and (2,1)* (4, 7)

(b) Is S a semi-group ? Is S commutative ?

Let A be a non-empty set with the operation * defined by a * = a and assume A has more than
one element. Then

(a) Is A a semi-groups ?

(b) Is A commutative ?

(c) Does A have an identity element ?

(d) Which elements, if any have inverses and what are they ?

Answers
(@) 17, - 32, % " (b) Yes, Yes
(c) zero d) Ifa= -%. then a has an inverse which is (1:-:::) .
(a) (3, 10), (- 5, 1) (b) Yes, No (¢) (1, 0)
(d) The element (a, b) has an inverse if a # 0 and its inverse is (-l - 2)
a a

(a) (19, 20), (18, 7) (b) Yes, Yes
(@) Yes (b) No (c) No (d) It is meaningless to talk abont inverses when no identity element exists.
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8.12. GROUP (P.T.U. B.Tech. May 2008, 2006 ; Dec. 2004 ; May 2004 : Dec. 2001)

Let us consider an algebraic system (G, #), where * is a binary operation on (i. Then the
system (G, #) is said to be a group if it satisfies following propertles
(i) The operation * is a closed operation.
(i1) The operation * is an associative operation.
(ii1) There exists an identity element w.r.t. the operation *.
(iv) For every a € G, there exists an elementa'e Gsuchthata '*a=a~«a '=e¢
For example, the algebraic system (I, +), where I is the set of all integers and + is an

addition operation, is a group. The element 0 is the identity element w.r.t. the operation +.
The inverse of every elementa e lis—a e 1.

Example 1. Determine whether the algebraic system (Q, +) is a group where @ is the set
of all rational numbers and + ts an addition operation.

Sol. Closure Property. The set Q is closed under operation +, since the addition of two
rational numbers is a rational number.

Associative Property. The operation + is associative, since (a +b)+c=a + (b +¢)V a,
h ee Q. .
Identity. The element 0 is the identity element. Hencea + 0=0+a=a Va ¢ Q.

Inverse. The inverse of every element a € Q is —a € Q. Hence the inverse of every
clement exists.

Since, the algebraic system (Q, +) satisfies all the properties of a group, hence ( Q, +) 18
il group.

Example 2. Which of the following are groups under addition N, Z, Q, R, C ?

Sol. The set of integers Z, the set of rationals Q, the set of reals R, the set of complex
numbers C, are all groups under addition. (Prove yourself as in Example-1)

But N, the set of natural numbers donot form a group under addition. Since, N does not
have additive identity. (0 ¢ N).

Example 3. Let S be the set of n x n with rational entries under the operation of matrix
multiplication. Is S a group ?

Sol. We know that matrix multiplication is associative. But inverse does not always
exist. As we know that if | A | # 0, then A! exists.

Example 4. Prove that G = (1, 2, 3, 4, 5, 6) is a finite abelian group of order 6 under
multiplication modulo 7. (P.T.U. B.Tech. May 2009)

Sol.G=11,2,3,4,5,6, x,)

Consider the multiplication modulo 7 table as shown below. Recall that a x, b = The
remainder when ab is divided by 7

X, 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 H
3 3 6 2 5 1 . 4
4 4 1 5 2. 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1
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From the table, we observe that each element inside the table is also an element of G. It
mcans that G is closed under multiplication modulo 7.

Also for each a, b,c € G

a x, (b x,c)=(ax,b) x,c i.e., associative law hold.

From the table, we observe that the first row inside the table is identical with the
top-row of the table. Therefore, 1 is the identity (multiplicative) of G.

Also, 2x,4=1; 3%, 5=1, 4x,2=1, 5%,3=1,6x,6=1
Hence, each element G has an inverse, ie.,

Inverse of 2 is 4 and of 4 is 2

Inverse of 3is 5 and of 5 is 3

Inverse of 6 is 6

Hence, G is a group under the multiplication modulo 7.

Example 5. Consider an algebraic system (Q, *),where Q is the set of rational numbers

and * is a binary operation defined by
a*b=a+b-abVa, be Q.

Determine whether (Q, *) is a group.

Sol. Closure property. Since the elementa * b € Q for everya, b € Q, hence, the set Q
is closed under the operation *.

Associative property. Let us assume a, b, c € Q, then we have

(@azb)*c=(a+b-ab)=*c
=(a+b-—ab)+c-(a+b-ab)
=a+b-ab+c—-ac—bc +abc
é =a+b+c-ab-ac-bec +abe
Similnrlﬁr, a*(b*c)=a+b+c-ab-ac-bc+abc.
'I‘hereibﬂc, (@a*b)*c=ax*(b*c)
+ is dssociative.

Identit]q.. Let e is an identity element. Then we havea *te=a Va e Q

E at+e—ae=a or e-ae=0
or ; e(l-a)=0 or e=0,ifl-a=0

Similarly, for e*ra=aVae Q wehavee=0

Therefor#, fore =0, we havea*e=e*a=a

Thus, 0 is the identity element.

Inverse, Let us assume an element a € Q. Let a- ! is an inverse of a. Then we have

ata"l=0 [Idenﬁw]‘#
a+al-aal=0 =
or | al(l-a)=-a or a‘1=;{z_—1,a==% e
Now, -2 _€Q, if a=1 R

a —
Therefore, every element has inverse such thata # 1. .
Since, the algebraic system (Q, *) satisfy all the properties of a group. Hence, (Q, *) is a
group.
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8.13. Z_THE INTEGERS MODULO m

The integers modulo m, denoted by Z , is the set given by

Z,=10,1,2,...m-1;+,, x| where the operations +, (read as addition modulo m)
and x, (read as multiplication modulo m) are defined as

a +, b = remainder after a + b is divided by m
a x,, b = remainder after a x b is divided by m.
Theroem X. Foreachn 21, [Z,; +, ] is a group.

I
Proof. By definition, If a, b € Z_, then a +, b is remainder after a + b is divided by m,
which is again an element of Z . Hence Z _ is closed under +, . Also the addition modulo m is
always associative. 0 is the identity element for +  and every element of Z  has an additive
inverse. . Z _is a group under addition modulo m.

8.14. FINITE AND INFINITE GROUP

A group (G, *) is called a finite group if G is a finite set.

A group (G, #) is called an infinite group if G is an infinite set.

For Example

1. The group (I, +) is an infinite group as the set I of integers is an infinite set.

2. The group G =(1, 2, 3, 4, 5, 6, 7} under multiplication modulo 8 is a finite group as the
set G is a finite set.

8.15. ORDER OF GROUP

The order of the group G is the number of elements in the group G. It is denoted by | G|.
A group of order 1 has only the identity element i.e., ({e}).

A group of order 2 has two elements i.e., one identity element and one some other element.
Example 6. Let (fe, x), *) be a group of order 2. The -table of operation is shown in

(Fig. 8.3).
GROUPS 241
* ’ e x
e e
x x e
Fig. 8.3

The group of order 3 has three elements i.e., one identity element and two other ele-
ments.
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8.16. SUBGROUP (P.T.U. B.Tech. May 2007, May 2006)

Let us consider a group (G, *). Also, let S ¢ G ; then (S, *) is called a subgroup iff it
satisfies following conditions :
(i) The operation * is closed operation on S.
(zi) The operation * is an associative operation.
(i) Ase is an identity element belonged to G. It must belong to the set S i.e., The identity
element of (G, *) must belongs to (S, *).

(iv) For every element a € S, a ! also belongs to S.

242 DISCRETE STRUCTURES

For example, let (G, +) be a group, where G is a set of all integers and (+) is an addition
operation. Then (H, +) is a subgroup of the group G, where H = {2m : m € G}, the set of all even
integer.

For example, let G be a group. Then the two subgroups of G are G and G, = [e], e is the
indentity element.

Example 9. Let (I, +) be a group, where I is the set of all integers and (+) is an addition
operation. Determine whether the following subsets of G are subgroups of G.

(a) The set (G, +) of all odd integers. (b) The set (G,, +) of all positive integers.

Sol. (a) The set G, of all odd integers is not a subgroup of G. It does not satisfy the
closure property, since addition of two odd integers is always even.

(b) Closure property. The set G, is closed under the operation +, since addition of two
even integers is always even.

Associative property. The operation + is associative since (a + b) + ¢ = a + (b + ¢) for
everya, b, c € G,.
Identity. The element 0 is the identity element. Hence, 0 € G,,.

Inverse. The inverse of every element a € G, is —a € G,. Hence, the inverse of every
element does not exists.

Since the system (G,, +) does not satisfy all the conditions of a subgroup. Hence, (G,, +)
is not a subgroup of (I, +).

Example 10. Consider the group Z of integers under addition. Let H be the subset of Z
consisting of all multiples of a positive integer m i.e.,

H={... ,—3m,-2m,-m, 0, m, 2m, 3m, .....}

Show that H is a subgroup of Z.

Sol. Forr,s e Z, rm, sm € H.

Consider rm+sm=(r+s)me H
i.e., H is closed under addition.

Forrm e H,—rm € Hand consider rm + (=rm)=(r-r)ym=0e H
t.e., 0 is the identity of H and — rm is the inverse of rm.

Hence, H is a subgroup of Z.
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8.17. ABELIAN GROUP (P.T.U. B.Tech. May 2002)

Let us consider, an algebraic system (G, *), where * is a binary operation on G. Then the
system (G, #)is said to be an abelian group if it satisfies all the properties of the group plus an
additional following property :

(i) The operation * is commutative i.e.,

a*b=b*aVa,be G

For example, consider an algebraic system (I, +), where I is the set of all integers and +
is an addition operation. The system (I, +) is an abelian group because it satisfies all the
properties of a group. Also the operation + is commutative for everya, b € 1.

ILLUSTRATIVE EXAMPLES

Example 1. Consider an algebraic system (G, *), where G is the set of all non-zero real

b
numbers and * is a binary operation defined by a * b = aT' Show that (G, *) is an abelian

group.

b
Sol. Closure property. The set G is closed under the operation * . Since,a * b = % is

a real number. Hence, belongs to G.

GROUPS 245

Associative property. The operation * is associative. Let a, b, ¢ € G, then we have

ab (ab)e abc
(@a*b)*c=|—|*c= = —.
( 4 J 16 16
. be a(be) abe
* = —_— = —,
Similarly, a*b*c)=a~* ( n ) 16 16
Identity. To find the identity element, let us assume that e is a positive real number.
Then fora € G,
ea
era=a = 7 e or e=4
~Similarly, a*e=a
= | = = a or e=4
4 - - .

Thus, the identity an element in G is 4.
Inverse. Let us assume thata € G. Ifa~ ' € Q is an inverse of a, thena *a 1 =4

-1
16
= L -4 or al=—
4 a
Similarly, a !'+a=4gives
-1
= 2 2_4 or a“‘=l§.
4 a
Thus, the inverse of an element @ in G is -];6-
a

Commutative. The operation * on G is commutative.
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Commutative. The operation * on G is commutative.
Since, a¥bh=—=-"—=b+*a.

Thus, the algebraic system (G, #) is closed, associative, has identity element, has in-
verse and commutative. Hence, the system (G, *) is an abelian group.

Example 2. Let (Z, *) be an algebraic structure, where Z is the set of integers and the
operation * is defined by n * m = maximum (n, m). Determine whether (Z, *) is a monoid or a
group or an abelian group.

Sol. Closure Property

Weknowthatn *m=max.(n,m)e Z Vn,me Z

Hence * is closed.

Associative property. Let us assumea, b, c € Z.

Then, we have a * (b * ¢) = a * max. (b, ¢) = max. (a, max. (b, ¢)) = max. (a, b, ¢)
Similarly, (@ * b) *c=max. (a, b, ¢)

Hence * is associative.

Identity. Let e be the identity element. Then max. (a,e) = a

Hence, the minimum element is the identity element.

Inverse. The inverse of any element does not exist. Since, the inverse does not exist,
hence (Z, *) is not a group or abelian group but a monoid as it satisfies the properties of
closure, associative and identity.
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Example 3. Let S = {0, 1, 2, 3, 4, 5, 6, 7] and multiplication modulo 8, that is
x®y=(xy) Mod 8
(i) Prove that ({0, 1}, ®) is not a group.
(ii) Write three distinct groups (G, ®) where G c S and G has 2 elements.

Sol. (i) (a) Closure property. The set {0, 1) is closed under the operation ®, as shown
in table of operation (Fig. 8.6).

® | 0 1

0 0 0

1 0 1
Fig. 8.6

(b) Associative property. The operation ® is associative. Let a, b, ¢c € G, then we have
@®b)®c=a®@b®c) eg, 0®31)®1=(00®1=0
Similarly, ®(1®1D=08(1)=0.
(c) Identity. The element 1 is the identity element as for every a € {0, 1}: We have
1®a=a=a®1.
(d) Inverse. There must exist an inverse of every element a € (0, 1}, such that
a®al=1
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Example 6. Let G be a group of 2 x 2 matrices with rational entries and non-zero deter-
minant. Let H be a subset of G consisting of matrices whose upper right entry is zero. Then
show that H is a subgroup of G.

Sol. Given G=[(: 3):a.b.c,deQaudad—bc¢0]

H-[(: g]:a,c.deQ]

H is a subgroup of G iff
(i) H is closed under multiplication
(ii)ForAe HAle H

- a) =-( a)
Let A, B € H where A-[cl d, ) B= ¢, d

' o a)e a)-(oerhe aa)
Conaider AB-(CI dy)\¢e; dy) = \crap +dic; dydy ) € H
i.e., H is closed under multiplication.
Further, For A € H, we have
a 0 a 0
A=(c d]’|A|= c dl“"
Also Ay=d,Ap=-c,A;=0,Ap=0a
. A, A,Y (d 0O
A=[Sn 12) =[ ]
d 0
.1 _ adjA ad
AM=Tar =|_c 1|<H
ad d
Hence H is a subgroup of G.

Example 7. Let G is a group of real numbers under multiplication. Let H= (- 1, 1). Then
show that H is a subgroup of G under multiplication.
Sol. Consider the multiplication table of H under multiplication.

e | -1 1
-1 1 -1
1 -1 1
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From the table, we observe that each element in the table belongs to H.
Hence H is closed under multiplication.

Also, the inverse of = 1 is — 1 and of 1 is 1. Thus each element of H has its inveTe.
Therefore H is a subgroup of G under multiplication.

Example 8. Consider the group of integers Z under +. Let E = The set of even integers.
Then show that E is a subgroup of Z under +.

Sol. Given E = {2m : m € Z} i.e., the set of even integers. Clearly E is a subset of Z.
Let a,be E = a=2m,me Z

b=2n,nel
a+b=2m+2n=2m+n)e E |m,n.eZ'=a m+nel
i.e., E is closed under +. Also for eacha € E, we havea=2m,me Z
= —-a=-2m=2(-m)=2¢t, t=—-me 2
= —-acE

Thus each element belonging to E has additive inverse.
E is a subgroup of Z under +.

Example 9. Let Z be a group of integers under +. Let Z* is the set of non-negative inte-
gers. Is Z* a subgroup of Z ?

Sol. Z+*={0,1,2,3,..)

Clearly Z* is a subset of Z. But Z* is not a subgroup of Z. Since the elements of Z* do not
have additive inverses. Fore.g.,2 e Z*,but - 2 ¢ Z*.

Example 10. Consider Z,, = (0, 1, 2, ... 11], the group under addition modulo 12. Let
H =0, 3, 6, 9]. Show that H is a subgroup of Z,, under +,.

Sol. Given H = [0, 3, 6, 9]. Clearly H is a subset of Z,,.

Leta,be H = a+,,bisalsoin H. .. His closed under +,,. Also we have
3 +4,9 =0, 0is the identity of Z,,
6+,6=0
9+,3=0

each elemeént of H has its inverse.
H is a subgroup of Z,, under addition modulo 12.

Example 11. Consider the group of integers Z under +. Let 2Z and 3Z are two subgroups
of |Z; +]. Is 2Z N 3Z a subgroup of Z ?

Sol. We know that if H and K are two subgroups of a group G. Then H n K is also a
subgroup of G. Using this result, we can say that 2Z n 3Z is a subgroup of Z. (Theorem XII)

Example 12. Consider Z,, the group under addition modulo 15. Let H, = [0, 5, 10],
H, = [0, 4, 8, 12]. Are H, and H, subgroups of Z,; under +,; ?

Sol. To check whether H, is a subgroup of Z,,, compute the following table.

+15 | 0 5 10
|
. 0 0 5 10
| 5 5 10 0
{ 10 10 0 5
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From the table, we observe that each element which is in the interior of the addition
table is also in H,. .. H, is closed under +,. Also we have 5 +,; 10=0,10+,,5=0,0is the

identity .. each element of H, has its inverse. . H, is a subgroup of Z,,.
To check, whether H, is a subgroup of Z,;, compute the following table.
+15 0 4 8 12
0 0 4 8 12
4 4 8 12 1
8 8 12 1 5
12 12 1 5 9

From the table, we observe that there are some elements in the interior of the addition
table, which are not in H, (e.g., 9 ¢ H,). Hence H, is not closed under +,;. ~. H,is not a
subgroup of Z,.

TEST YOUR KNOWLEDGE 8.2

1. Ifa, b, c are elements of a group G and a * b = ¢ * a. Then b = ¢ ? Explain your answer.
(P.T.U. B.Tech, Dec. 2006, May 2005)

2. Discuss the relation between groups and monoids ? Is every monoid a group ? Is every group a
monoid ?
3. Which of the following are groups ?
(i) M, _4(R) with matrix addition
(ii) M,,_,(R) with matrix multiplication
(i) The positive real numbers with multiplication
(iv) The non-zero real numbers with multiplication
(v) The set [- 1, 1] with multiplication.
4. Give an example of (i) a finite abelian group (ii) an infinite non-abelian group.
5. LetV=le a.b,c) Let * be defined by x *+ x =e for all x € V. Write a complete table for * so that (V, *)

is a group.
8. Which of the following subsets of the real numbers is a subgroup of [R, +] ?
(a) The rational numbers (b) The positive real numbers
K .. . .
(c)H={E=Kllmmm} (d) H = (2K : K is an integer]

(e)H={x:-100<x< 100}
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Answers

No, Yes (Every group is a monoid)
(¢), (ii2), (iv), (v) are groups
(i) G = {e, a, b, ¢ is a finite abolian group under * defined by the following Table:

* e a b c
e e a b c
a a e c b
b b c a e
¢ ¢ b e a

(ii) M, (R), the set of all 2 x 2 matrices [: 3], ad — bc # 0 is an infinite non-abelian group w.r.t.

the matrix multiplication.
See Q. 4 (i) 6. (a) and (¢) 11. {e} and G itself.
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8.18. (a) COSETS (P.T.U. B.Tech. Dec. 2006 ; May 2004 ; Dec. 2003 ; May 2002)

Consider an algebraic system (G, *), where * is a binary operation. Now, if (G, *) is a
uroup and let a be an element of G and H ¢ G, then

The left coset a * H of H is the set of elements such that
a~H=(a*h:he H).

The right coset H * a of H is the set of elements such that
H+a={h~a:he H).

The subset H is itself a left and right coset sincee* H=H *e = H.
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8.18. (b) COSET REPRESENTATIVE SYSTEMFORH IN G

A subset C of G is said to be a coset representative system of H if C contains exactly one
c¢lement from each coset. Such an element is called a representative of the coset. The number
of coset representatives is equal to (G : H], the index of H in G.

Example. Let H be a subgroup of a finite group G. How muny coset representative sys-
lems exist for the cosets of H ?

Sol. There are n(H) ways of choosing an element from any coset and there arc |G : H]
distinct cosets. Hence, the desired number is H!¢: Hl,

ILLUSTRATIVE EXAMPLES

Example 1. Let us consider a group (G, *), where G is a set having elements (0, 1) and *
is a binary operation. Also, let H = (1} is a subgroup of G. Determine all the left cosets of H in G.

Sol. There are only 2 left cosets i.e.,
1*H=H-={(1)
0=* H = {0).

Example 2. Let (I, +) is a group, where I is the set of all integers and + is an addition
operationandlet H={(...,-4,-2,0,2, 4, 6, 8, ...] be the subgroup consisting of multiples of 2.
Determine all the left cosets of H in I.

Sol. There are two distinct left cosets of H in I.
0+H={..-6,-4,-2,0,2,4,6,...}]=H

1+H={..-5,-3,-1,1,3,5,7, ...}
2+H=(.-4,-2,0,2,4,...)=H
3+H={(..,-5,-3,-1,1,3,5,..)=1+H
=0 0On.
There is no other distinct left coset because ahy other left coset coincides with the cosets
given above. : y

’
e

) "Example 3. Let G = (1, +) be a group, where I is the set of integers and + is an addition
operation, alsolet G, = |...... -14,-7,0,7, 14,21, ...... ] be a subgroup consisting of the multiples
of 7. Determine the cosets of G, in I.

Sol. The set I has 7 different cosets (left or right) of G,, which are as shown helow.
0+H={...—14,-7,0,7, 14, 21, .....)
1+H={....-13,-6, 1, 8, 15, 22, ...... )
2+H={...-12,-5,2,9, 16, 23, ...... !
3+H={...-11,-4,3,10,17, 24, ...... )
4+H={....-10,-3,4,11, 18, 25, ...... )
F+H={...-9,-2,5,12,19, 26, ......]
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Lagrange’s Theorem (P.T.U.B.Tech. Dec. 2007, 2006, May 2006, Dec. 2003)

Theorem IIl. If G is a finite group and H is a subgroup of G, then o(H) |o(G). i

Proof. Since H is a subgroup of a finite group G, .. H is also finite, say,

H = {(hy, hy, ... h,], where each k, is distinct.
Consider Ha = (h,a, hya, ... h,al. We claim all h,a’s are distinct. For if,
ha=ha

= h,=h; | Right cancellation law
a contradiction, since A;’s are distinct. Hence Ha has distinct elements.

Now G is finite . The number of distinct right cosets of H in G is also finite, say, k.

.
Let G=Ha1ul-la2u...uHa‘=iU1Ha,-
= o(G) = Number of elements in Ha, + number of elements in Ha, + ...

+ number of elements in Ha,
=n+n+..kTimes =nk

= n |o(GQ)
= o(H) |o(G)
Hence the Theorem.

8.19. INDEX OF A SUBGROUP

Let G be a group and H be a subgroup of G. Then the number of right (left) cosets of H
in Giscal]edthai.ndexoinn G. The index of H in G is denoted by [G : H].

Theorem IV. If G is a finite group and H is a subgroup of G. Then [G: H] = O;gj

Proof. Proceeding in the same way as in the proof of Lagrange’s theorem, we have
: o(G) = nk, where & is the number of distinct right cosets of Hin G

- k= o(G) _ o(Q)
_ n o(H)
\ o(Q)

= : [G: H] = m
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8.20. NORMAL SUBGROUP (P.T.U. B. Tech. Dec. 2007, 2002, May 2002, Dec. 2001)

A subgroup H of a group G is called normal subgroup of G if for everyge G, h € H,
= ghgle H. :
.. or
A subgroup H of a group G is called a normal subgroup of G iff for g € G, we have
gHg'=HVge G
a b

Example 4. Let G be the group of two by two invertible matrices (c d); ad -bec #0. Let

0
H = [(3 a) -‘-"-”‘0]. Then H is a normal subgroup of G.

Sol. We first show that H is a subgroup of G.
Let k), h, € H such that

a 0 a 0
}11=(0 a)’hﬂg(ol al];ato,alto

a 0\(a, O aa 0
Now hlh2=(o a)[Ol °1]=( 01 aal)EH | aa, =0
i.e., H is closed under matrix multiplication. Further, For A € H,we have
a 0 a 0
A=(0 a]"‘”: 0 o=
Also A,=a,A,=0,A,=0,A,=a
T
. a 0 a 0
"‘“‘“(o a) =(o a)
1 0
adjA 1 (a 0\ |a
Hence A‘1=m=?{o C)= :; l EH,G#O
a .
Thus each element belonging to H has multiplicative inverse. Hence H is a subgroup of G.
Further, For g=(: 3]&G.h=(g g)eH,Consider
| d -b
L _(a b]a 0\(a b)" (a b]a OJad-bc ad - be
ghg--cd_l]acd_cd{)a -c a
ad-bc ad-bc
d -b a’d-bac -a’b+ba’
_(a"’ ba) ad-bc ab-bc| | ad-be ad — be
“\ca da -c a " | cad —dac - cab +da?
ad—bc ad—bc ad—bc ad—bc
a (ad - be) 0
_| ad-bc (a 0) H
= 0 a(ad-bc) [Z\0 a)€
ad - be

Hence H is a normal subgroup of G under matrix niultiplication.
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Example 5. Let G be a group of two by two invertible matrices (a 3) ad - bc #0 under

matrix multiplication. Let H-[(o g) ab#O] Is H a normal subgroup of G ?

Sol. We first show that H is a subgroup of G. Let A, B € H such that

0 0
A-(o b) ab#O B= ( b)albI*O

Consider AB=[3 g)[‘;‘ !?1) (“3‘ bb,) | - aba,b,#0
= H is closed under multiplication of matrices
a 0 -1 L 0 l 0 1
Mer,forAeH,A~!=[o b] = “ob o= ‘; 1| B 5*0
ab b

Thus, every element of H has multiplicative inverse. Thus H is a subgroup of G under
matrix multiplication.
Also, For g = (‘: 3] € G h= (g g) e H, Consider

d -b

a b)(a 0\(a b\ ab)aoad—bc ad - be
gh8—1=(c d)(o b)(c d] =[C d (0 b) —c a
ad-bc ad-bc
d -b a’d-b*c -a?b+b%
_[a’ b’) ad-bc ad-bc|_| ad-be  ad-bc | g
“\ca db —-c a " | cad -dbc - cab+dab
ad-bc ad-bc ad - be ad - be
Hence H is not a normal subgroup of G under matrix multiplication.

Example 6. Let G be the group of non-singular 2 x 2 matrices under matrix multiplica-
tion. Let H be the subset of G consisting of the lower triangular matrices i.e.; matrices of the

form [‘: g) where ad # 0. Show that H is a subgroup of G, but not a normal subgroup.

Sol. Let A, B € H such that
e 2 oela 2
A (cl dl)’ B ca dy

cosider 48=(2 2 )& &)

i o2
Ciﬂa*‘dlcz dyd,
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H is closed under matrix multiplication.

Also for any M € H, we have M = (: 2)

= M| =0 g|=ad¢0(given)

10
M-! exists. Further ( 01 ) € H is the identity of H. Hence, H is a subgroup of G.

But H is not a normal subgroup of G.
Since, for example,

1 2 10

Take 8=(1 3]EG‘ "=(1 1]EH
. 1-(1 2)(10 12)"
Consider = ghg” -[1 3)(1 1)(1 3)
(1 2)(10) 8 -2
"1l 1){l-1 1

13)(2 21)

Example 7. Let G be the group of non-singular 2 x 2 matrices under matrix multiplica-
tion. Let H be a subset of G consisting of matrices with determinant 1. Show that K is a normal

subgroup of G.

Sol. We know that if I = ((1) 2], then
det(I)=1 .. Ie€ H.ie., Hhas an identity.

LetA,Be H = det(A)=1, det(B)=1
Now, det (AB) =(det A)(detB) =1.1=1
= ABe H i.e, Hisclosed under matrix multiplication. Let Ae H = det(A)=1
Further, det(A™)) = V/det(A)=1/1=1

Ale H. ie, Hhasaninverse.

H is a subgroup of G.
letXe Gand Ae ilsuchthatdet A=1
Consider det (XA X-1) = det (X) det (A) det (X~1)

1

det @

=det(X).1.
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~ XAXle HforallXe G
H is a normal subgroup of G.
Example 8. Every subgroup of an abelian group is normal.

Sol. Let H be a subgroup of a normal group G. We show H is normal. Let & € H and
& € G. Consider

ghgt=gg'h heHcG = heG

=eh Alsoh,g'e G and

_ =heH gince G is abelian

= ghgle H. o hgl=glh

Hence, H is a normal subgroup of G.
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8.21. QUOTIENT GROUP

Let G be a group and H be a normal subgroup of G. Let G/H denotes the set of right (left)
cosets of H in G. Then G/N is a group (Proved in above theorem IX) called quot;lent group, or
factor group under the coset multiplication defined by

(aH) (bH) = abH.

8.22. CYCLIC GROUP (P.T.U. B.Tech. Dec. 2002)

A group G is called cyclic if for some a € G, every element x € G is of the form a” for
some n € Z. The element a is called the generator of G.

If G is cyclic, we write G=<a >

Foreg., If G=(1,-1, 1, -i], then G is a cyclic group generated by i.

Since il=ii?2=-1,3=-4i,i4=1
i.e., every element of G is of the form i” for some n € Z. Hence i is a generator for the cyclic
group.

Remark. The order of a generator of the cyclic group is equal to the order of the group.

eg., Z,,=I[Z,,; +,,) is a cyclic group.

Sol. Z,=10,1,2,..11, +,,}.
Consider 5=5
5+, 5 = 10

5+4,54,,56=3
S41p5+5+4,56=8
S541554,5+,5+,,56=25=1etc.

Thus we see that every element of Z,, is of the form 5n for some n € Z. Thus 5 is a
generator of Z,,.

Hence [Z,,, +,,] is a cyclic group with 5 as generator. Since inverse of 5is 7 (5 +,,7=0),
therefore, 7 is also a generator. (theorem X below)

Example 9. The group of integers Z is cyclic under addition.

Sol.Z=(0,+£1,+£2,%3,..)

Since 1=1
1+1=2
1+1+1=3
1+14+1+...1
. = n ete
n times

Thus we see that every element of Z is of the form n(1). Thus Z is cyclic group. Hence
Z=<1> AlsoZ=<-1>.
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Example 11. Consider the group G = (1, 2, 3, 4, 5, 6] under multiplication modulo 7.
(a) Find the multiplication table of G

(b) Find 271, 371, 671

(c) Find the orders and subgroups generated by 2 and 3

(d) Is G cyclic ?

Sol. By definition, a x, b = The remainder when ab is divided by 7

Fore.g., 5 x, 6 = 30 = 2 (when 30 is divided by 7, the remainder is 2)

The multiplication table is shown below

X 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

(b) The identity element of G is 1. (As the first row inside the table is identical with the
top most row).

271 = 4 (In the table, the intersection of 2 and 4 is 1)
31=5
61=6
(c) We have 2=2
2x,2=4 '

262 DISCRETE STRUCTURES

2x72x72=8=1

0(2)=3
Hence <2> = The subgroup generated by 2 = {1, 2, 4)
Also 3=3

3x,3=9=2,

3%x,3x%x,3=27=6
3x,3%x,3x%x,3=81=4
3x,3%x;3x%x,3x%x,3=243=5
3x,3%x,3%,3%,3%,3=729=1
: 0(3)=6. .. The group generated by 3 is given as
<3>=1(1,2,3,4,5,6)=G
(d)Sinceo(3)=6=0(G) = Giscyclic. Recall that a group G is cyclic if there exists an
clement @ € G such that o(a) = o(G).
Example 12. Let G =/[1, 5, 7, 11] under multiplication modulo 12.
(a) Find the multiplication table of G
(b) Find the order of each element
(c) If G cyclic ?
Sol. (a) We know a x,, b = The remainder when the product ab is divided by 12
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Sol. (a) We know a X,, b = The remainder when the product ab is divided by 12

Le., 5 x;, 7=35=11 etc.
The multiplication table is shown below
X1y 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

(b) Order (1) = 1 (since 1 is the identity element)
To find order of 5.5 x,, 5 =25 = 1

o(5) =
To find order of 7. 7 x,, 7=49 = 1
o(7) =2
To find order of 11. 11 x,,11= 121 =1
o(11) =

(c) We know that a group G is cychc if there exists an element a € G such that
ola) = o(G). Since o(1) = 1, 0(5) = 2, 0o(7) = 2, 0(11) = 2 i.e.,
There is no element of G whose order = 4
G is not cyclic.

8.23. (a) GROUP HOMOMORPHISM
(P.T.U. B. Tech. May 2007, May 2006, May 2002 ; Dec. 2001)

A mapping from a group (G,.). into a group (G, *) is said to be a group homomorphism if
dla.b)=0¢a)*db) Va,be G

_GROUPS 263

8.23. (b) GROUP ISOMORPHISM (P.T.U. B. Tech. Dec. 2007)

A homomorphism ¢ which is one-one and onto is called isomorphism and the groups G
and G’ are called isomorphic, written as G = G'.

A homomorphism which is onto is called epimorphism
A homomorphism which is one-one is called monomorphism.

8.24. KERNEL f

If f is a homomorphism of G to G, then kernel f is the set defined by
Kerf=[xe G:flx)=¢,¢ € G]
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8.25. IMAGE f

The image f is the set of the images of the elements under fi.e.,

Im(f)=1{b e G': fla) = b for a € G} where fis a homomorphism of G to G’
The term ‘range f’ is also used for ‘image f’.

Example 13. Let G be a group of real numbers under addition and let G’be the group of
positive real numbers under multiplication. Define f: G = G’ by fla) = 2¢.

Show that f is a homomorphism. Also show that G and G’ are isomorphic.
Sol. Given fis a mapping from (G, +) to (G’, .) defined by fla) = 2¢
Let a, b € G and consider
fla + b) =29+b =28 26 = fla) . Ab)
Hence f: G = G’ is homomorphism.
To check fis one-one. Let fla) = f{b)

= 20=20 = g=p
f is one-one.
To check fis onto : For each a € R, we have 2¢ is a positive real number. Thus fla) =
2 is onto. '

Hencef: G- G'is an isomorphism and the groups G and G’ are isomorphic i.e., G=G'.
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Example 15. Let G be the group of two by two invertible matrices [‘:
A . .
Define®:G—> G by 8 (A) = IAF.Show that © is a group homomorphism.
Sol.Let A,Be GsuchthatB(A)—i- B(B)——B—
| AR’ ~|BP
AB AB
. AB) = -
Conslder 9( ) |ABI2 IAI2|B|2
A B
= .— =06(A).06(B
AP |BP (A).6(B)

0 is a group homomorphism.

b
d

):ad—bcato.
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